Changes in membrane biophysical properties induced by sphingomyelinase depend on the sphingolipid N-acyl chain.
نویسندگان
چکیده
Ceramide (Cer) is involved in the regulation of several cellular processes by mechanisms that depend on Cer-induced changes on membrane biophysical properties. Accumulating evidence shows that Cers with different N-acyl chain composition differentially impact cell physiology, which may in part be due to specific alterations in membrane biophysical properties. We now address how the sphingolipid (SL) N-acyl chain affects membrane properties in cultured human embryonic kidney cells by overexpressing different Cer synthases (CerSs). Our results show an increase in the order of cellular membranes in CerS2-transfected cells caused by the enrichment in very long acyl chain SLs. Formation of Cer upon treatment of cells with bacterial sphingomyelinase promoted sequential changes in the properties of the membranes: after an initial increase in the order of the fluid plasma membrane, reorganization into domains with gel-like properties whose characteristics are dependent on the acyl chain structure of the Cer was observed. Moreover, the extent of alterations of membrane properties correlates with the amount of Cer formed. These data reinforce the significance of Cer-induced changes on membrane biophysical properties as a likely molecular mechanism by which different acyl chain Cers exert their specific biological actions.
منابع مشابه
Ablation of ceramide synthase 2 strongly affects biophysical properties of membranes.
Little is known about the effects of altering sphingolipid (SL) acyl chain structure and composition on the biophysical properties of biological membranes. We explored the biophysical consequences of depleting very long acyl chain (VLC) SLs in membranes prepared from lipid fractions isolated from a ceramide synthase 2 (CerS2)-null mouse, which is unable to synthesize C22-C24 ceramides. We demon...
متن کاملA shift in sphingolipid composition from C24 to C16 increases susceptibility to apoptosis in HeLa cells.
Sphingolipids, major lipid components of the eukaryotic plasma membrane, have a variety of physiological functions and have been associated with many diseases. They have also been implicated in apoptosis. Sphingolipids are heterogeneous in their acyl chain length, with long-chain (C16) and very long-chain (C24) sphingolipids being predominant in most mammalian tissues. We demonstrate that knock...
متن کاملBiophysical properties of single potassium channel in the brain mitochondrial inner membrane of male rat with Alzheimer’s disease
Introduction: Alzheimer’s disease is a progressive neurodegenerative disorder, characterized by impairment of memory and changes in behavior and personality. Recent evidence suggests that mitochondrial channels play important roles in memory disorders. Accordingly, the biophysical properties of a single potassium channel were investigated in the brain mitochondrial inner membrane of rat with...
متن کاملCholesterol- and sphingolipid-rich microdomains are essential for microtubule-based membrane protrusions induced by Clostridium difficile transferase (CDT).
Clostridium difficile toxin (CDT) is a binary actin-ADP-ribosylating toxin that causes depolymerization of the actin cytoskeleton and formation of microtubule-based membrane protrusions, which are suggested to be involved in enhanced bacterial adhesion and colonization of hypervirulent C. difficile strains. Here, we studied the involvement of membrane lipid components of human colon adenocarcin...
متن کاملRole of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome?
Recent biophysical data suggest that the properties of ceramide observed in model membranes may apply to biological systems. In particular, the ability of ceramide to form microdomains, which coalesce into larger platforms or macrodomains, appears to be important for some cellular signaling processes. Several laboratories have now demonstrated similar reorganization of plasma membrane sphingoli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 55 1 شماره
صفحات -
تاریخ انتشار 2014